

LS C&S Bus Way System [Ex/Ez/Ef-Way[™] / Mini-Way[™]]

Energy Cables & Systems LS Cable & System-setting the standards in power solution business

Industrial Materials Realizing a convenient future

with cutting-edge materials

Telecommunications Providing cutting-edge, innovative technologies for a ubiquitous network

51.8

Integrated Modules

& Cable Systems Providing the best customized cable solutions for all environments

LS Cable & System Company Profile

Total Solution Provider for Electric Power and Telecommunication Industries

LS Cable & System, the longtime de facto holding company of LS Group, officially transformed into a holding company in July of 2008. The company's operations now encompass a total solution for electric power and telecommunication industries.

The latest change in corporate structure comes as the company is accelerating efforts to improve management efficiency in rapidly expanding markets. The move also results from efforts to effect a more responsible and transparent management structure. Management is now prepared to take more aggressive action to enhance our businesses and to identify new growth engines. The holding company will take the lead in fostering new growth engines and in identifying lucrative investment opportunities, while the company's other business units will focus on improving management and on making operations more efficient. With the continued support of the holding company, LS Cable & System will spearhead efforts to strengthen our business expertise, corporate competitiveness and management.

Toward the Global Leading Cable Company

In August of 2008 LS Cable & System acquired Superior Essex, North America's largest cable company, making LS Cable & System the third-largest player in the global cable industry. Superior Essex's flagship line of magnet wires and telecommunication cables further strengthened LS Cable & System's product lineup, which had focused on power cables, fiber optic cables and industrial materials. Superior Essex's extensive North America and European production and distribution networks will help LS Cable & System cement a presence in the region and bring the company one step closer to becoming a full-fledged global enterprise.

Superior Essex

Superior Essex Inc., a FORTUNE 1,000 company, is one of the largest wire and cable manufacturers in the world. The company manufactures and supplies a broad portfolio of wire and cable products for the communications, energy, automotive, industrial, and commercial & residential end-markets. It is a leading manufacturer of magnet wire, fabricated insulation products, and copper and fiber optic communications wire and cable. It is also a leading distributor of magnet wire, insulation and related products.

The enterprise that is together with human beings through the information and energy transmission technology

LS C&S Bus Way System

[Ex/Ez/Ef-Way[™] / Mini-Way[™]]

Commitment to Our Customers

As an extra high voltage cable and accessories manufacturer and a division of LS Cable & System we never stop researching, designing, developing, and manufacturing products with the higher level of quality to address the ever-changing demands in everyday life as well as in the industry. Our quality control meets the most delicate requirements of international standards and the high level of quality is recognized both by local and international clients.

Our commitment to develop and deliver solutions to address our customers' needs and challenges keep our technology on the cutting edge and our know-how in the field more valuable, which our customers highly appreciate.

We are looking forward to working with you.

Contents

[Ex/Ez/Ef-way™]

Introduction
General Specifications11
Physical Data17
Technical Data
Temperature Monitoring System
Installation Procedure

[Mini-way™]

Introduction		9
General Specifica	ations4	0
Structure Data		2
Technical Data		7
Certificates		9
Global Network		0

The enterprise that is together with human beings through the information and energy transmission technology

LS C&S Bus Duct

LS C&S Bus Way System [Ex/Ez/Ef-WayTM]

- □ Introduction
- General Specifications
- Physical Data
- Technical Data
- Temperature Monitoring System(Optional)
- Installation Procedure

Introduction 1.1 High Quality & Reliable Power Distribution System

The demand for the economical and efficient distribution of electric power for business and industrial applications continues to grow.

LS C&S Bus Duct has been designed and manufactured to provide the following features:

High Current Density

LS C&S Bus Duct can carry up to 7500A with reduced loss. It is ideal for both high-rise buildings and industrial applications, and performs with a safe, flexible, reliable and economical efficiency.

The simplified design of the LS C&S Bus Duct system allows for easy routing, extension, relocation, replacement and maintenance of power loads.

These features are well suited to the needs modern architecture.

Service Conditions

Ambient temperature: -15°C ~ 55°CRelative humidity: 95% or below** No condensing by NEMA Bu 1.1.

Bus Bar

Copper bus bars have a conductivity of 99% or more. Aluminum bus bars have a conductivity of 61% or more. Electrical contact surfaces are tin plated in order to reduce contact resistance and prevents contact surface corrosion.

Temperature Rise Stability

Temperature rise limits are within 55°C or less on the external duct surface, as specified in IEC 60439-1, -2.

Insulation Properties

Class B (130° C) is applied to the conductors. Epoxy, PET and mica (1200° C, for fire resistance) are available options.

FRP (fiber reinforced plastic) is used as a spacer between conductors or between the conductor and the duct housing. These insulating materials have very high dielectric properties.

LS C&S Bus Duct systems are rated up to 1000V service capacity.

Lower Voltage Drop & High Short-Circuit Ratings

Because of the extremely low impedance, the resultant voltage drop is also low.

The effective design allows power to be delivered with the greatest possible efficiency.

LS C&S Bus Duct also has a very high shortcircuit with stand strength.

This ensures LS C&S Bus Duct can be safely applied in commercial and industrial environments.

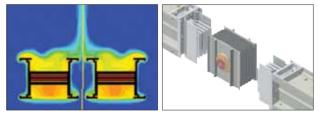
LS C&S Bus Duct offers an optional intelligent temperature monitoring system. An optical fiber is attached to the bus duct housing and is used to measure real time temperature conditions along the length of the installed bus duct system.

Compact Size

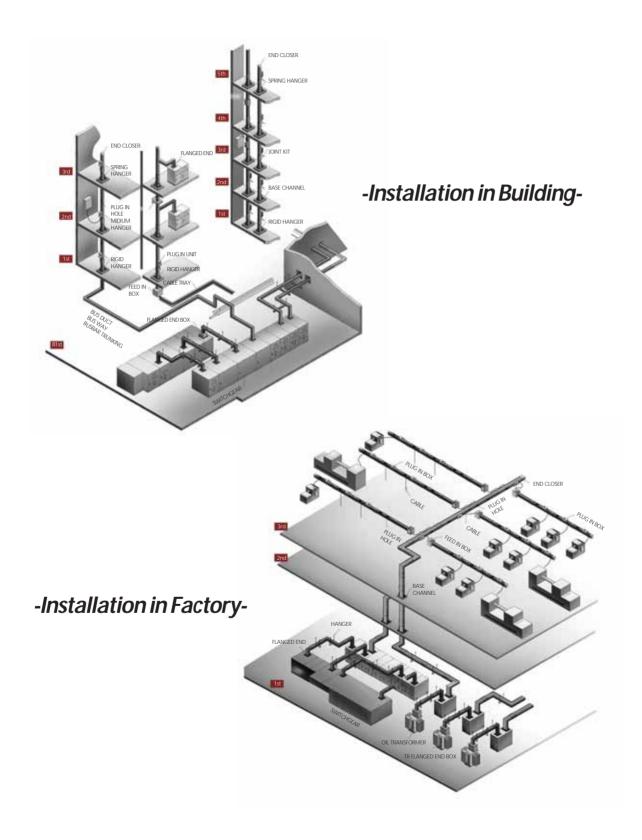
The efficient heat radiating design allows the use of smaller bus bars. The aluminum housing makes the system lighter than other conventional duct. LS C&S Bus Duct requires less space than wire or conduit for a given application.

Economical and Easy Installation

LS C&S Bus Duct uses an extruded aluminum housing and an efficient joint kit. Reduced weight and simple joint connections make the installation process faster and less costly.


Temperature Monitoring of Bus Duct Line(optional)

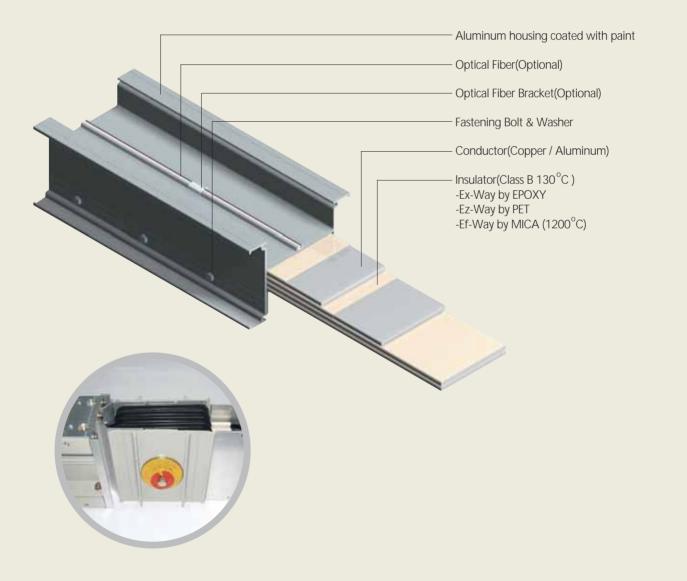
A real-time integrated monitoring system of the bus duct distribution line senses temperature, fire, vibration, etc. and issues an alarm when abnormal conditions are detected.



Standards

IEC 60439-1	: Low-voltage Switchgear and Controlgear Assemblies
IEC 60439-2	: Particular Requirement for Busbar Trunking Systems(Busways)
UL 857	: Busways In case of UL mark, it will be discussed with manufacturer in advance.
BSEN 60439	: Busways
NEMA BU 1.1	: Busways
KSC IEC 60439	2

Introduction 1.3 Bus Way System in Building



General Specifications 2.1 LS C&S Bus Duct Series

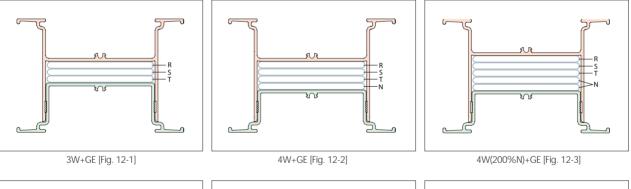
LS C&S Bus Duct offers a wide range of distribution capacities for buildings and factories, from 630A up to 7500A.

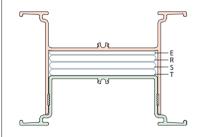
Since LS C&S Bus Duct is very compact and light weight, it can be easily installed using the low contact resistance joint kits.

LS C&S Bus Duct comes with a standard IP54 rating and can be upgraded to an IP65 rating on request. An optional temperature monitoring system is also available.

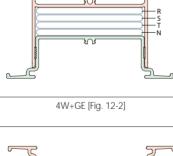
2.2 Grounding and Harmonics

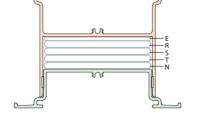
LS C&S Bus Duct can provide large grounding capacities depending on the type of end flange configuration. The housing alone provides over 100% of the internal conductor area at the 2500A ampacity rating. The housing acts both as a low impedance ground path as well as an efficient thermal radiator.


If increased ground capacity is required, additional internal ground bus bars can be added to the assembly, providing a 50% or 100% increase in ground path.


Where non-linear loads are anticipated, LS C&S Bus Duct offers an additional neutral bus option that can handle 100% or 200% of the harmonic currents.

As modern industrial and commercial non-linear applications increase, the induced harmonic currents in the bus duct system require an increase in the ampacity of the neutral bus bar.


Even in a balanced 3-phase system, these harmonics still exist, and can lead to the reduced performance of the distribution system and operating equipment.


This added neutral bus bar minimizes harmonic effects and helps ensure safe operating conditions within rated heat limits.

3W+50%E, 100%E [Fig. 12-4]

۲Os

Construction Options

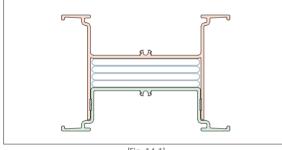
No.of DH bolt			No.of DH bolt								
NO.OI DH DOIL	Cu			Cu	Al						
1	630, 800, 1000,1250,1600, 2000	630, 800, 1000, 1250	4	5000	3200, 3600, 4000						
2	2500, 3200, 3600, 4000	1600, 2000, 2500	6	7500	5000, 6000						
3	6000	-									

Double-headed bolts are used to ensure proper torque levels when installing the joint kit. A long-handled wrench applied to the outer bolt head will shear off the head of the bolt when the proper torque has been applied($700 \sim 1000$ kgf·cm)

The remaining bolt head can be re-used when tightened to 800kgf cm using a torque wrench.

Top [Fig. 13-1]

Bottom [Fig. 13-2]


2.4 IP Degree

LS C&S Bus Duct is designed with a standard IP54 rating, and can be upgraded to IP65 for service in adverse conditions.

The addition of a sealant between the extruded housing sections allows LS C&S Bus Duct to provide optimum performance in the most demanding applications. Through superior design and applied materials technology, system uptime and reliability are ensured even in the most severe-duty environments.

Protection Degree IP54

Feeder, plug-in and tap-off bus duct are available in either drip-proof or splash-proof construction. Here the special sealing design between the housing sections is used.

[Fig. 14-1]

Protection Degree IP65

With an IP65 rating, the bus duct is ideal for use in corrosive environments. Here the special sealing design between the housing sections is upgraded to seal off water, dust and gasses with the addition of a polymer barrier.

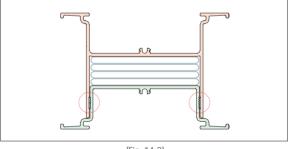


Table 14

Construction Options

Protection Degree	Available Bus Duct	Construction Type
IP54/IP55	Feeder, Plug-in, Riser	Drip-proof / Splash-proof
IP65/IP66	Feeder	Water Jet-proof

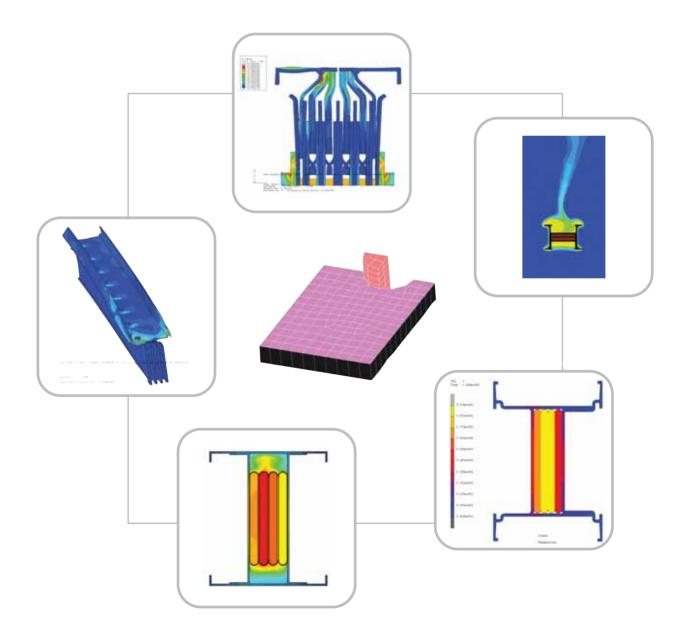
* Additional sealant treatment is required for Joint-Part over IP55 indoor

** Outdoor applications for horizontal edge-wise, riser, plug-in and joint applications require advance discussion with the manufacturer. One of the unique features of LS C&S Bus Duct is the ability to monitor the bus duct system performance under actual load conditions. The installation of the temperature monitoring system in buildings and factories permits an early warning of any potentially unsafe conditions.

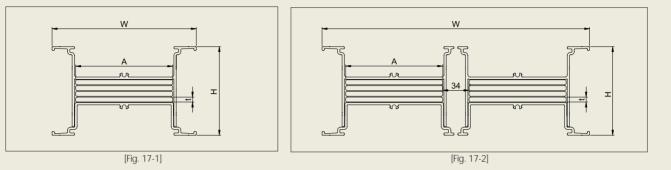
The temperature monitoring function uses an optical fiber mounted to the bus duct housing as the temperature sensor.

Using a single fiber, the system can measure distributed temperatures over several kilometers.

ABF (Air Blown Fiber) enables easy integration and installation where access is difficult, and can be added to a previously installed bus duct line.


Simple operation & user-friendly GUI (Graphic User Interface) software.

Structure Data


2.6 Design Simulations

The design of LS C&S Bus Duct is carried out under detailed CAE (Computer Aided Engineering) simulation processes. Dynamic analysis of mechanical, thermal and electrical simulations greatly increases the quality and performance of the LS C&S Bus Duct product line.

Physical Data 3.1 Straight Feeders

Construction Options

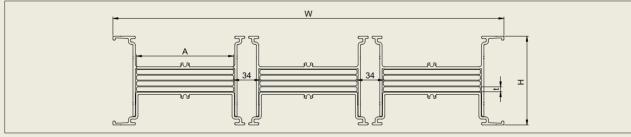
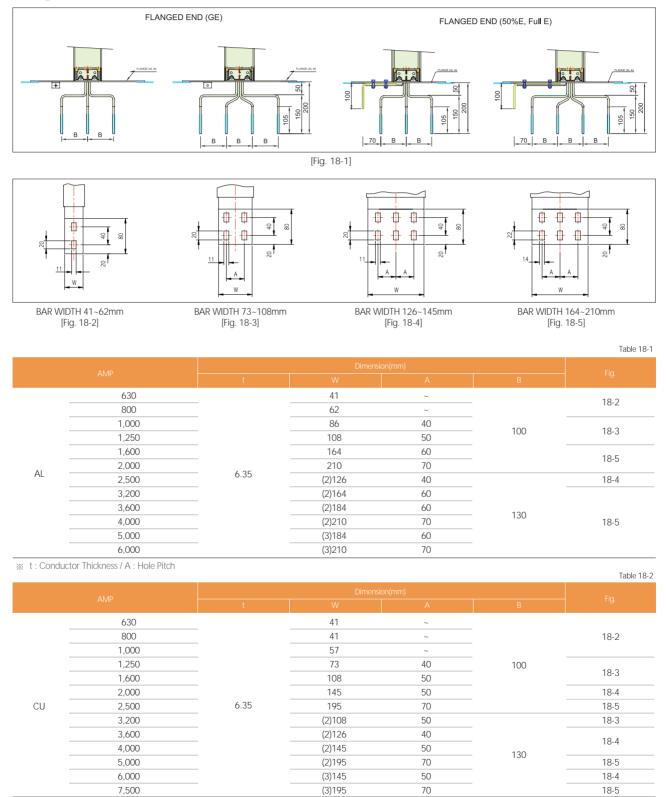


Table 17 630 41 107 7.58 8.43 8.79 9.15 800 62 128 8.83 10.09 10.63 11.17 1,000 86 152 10.92 12.14 12.89 13.64 17-1 1,250 108 174 13.40 16.36 17.30 15.42 164 230 19.57 20.61 22.08 23.55 1,600 2,000 210 276 23.08 26.23 28.14 30.09 AL 6.35 2,500 352 28.94 33.18 35.38 37.58 (2)126 428 34.86 42.44 45.29 48.14 3,200 (2)164 17-2 (2)184 3,600 468 38.31 45.40 48.59 51.78 4,000 520 41.81 50.10 53.75 (2)210 57.40 686 57.74 68.43 78.01 5,000 (3)184 73.22 17-3 6,000 (3)210 764 64.03 73.61 81.51 89.41 630 41 107 11.91 14.44 15.65 16.86 800 41 107 11.91 14.44 15.65 16.86 1,000 57 123 14.65 18.25 20.58 22.91 1,250 73 139 17.65 22.04 24.60 27.16 17-.1 1,600 108 174 26.74 31.00 36.47 41.94 37.39 2,000 145 211 31.69 44.76 52.13 54.59 65.91 CU 2,500 6.35 195 261 42.69 60.25 50.16 316 63.60 69.87 76.14 3,200 (2)108 352 57.55 73.16 80.41 87.66 3,600 (2)126 17-2 390 4,000 64.82 82.72 91.17 99.62 (2)145 5,000 (2)195 490 85.26 109.14 121.08 133.02 6,000 (3)145 569 97.88 124.83 137.59 150.35 17-3 7,500 719 179.83 196.85 (3)195 126.89 162.81


ж Н : 107.5(3W+GE, 3W+50%E) / 115(4W+GE, 4W+50%E) / 130(4W+100%E)

Structure Data

Technical Data

Physical Data 3.1 Straight Feeders

Flanged End

※ t : Conductor Thickness / A : Hole Pitch

Α **-**ø12 D Α 10-012 D OPENING CUT OUT в Α D 8-012 в D в D D **C**1 C C2 **C**2 **C**1 **C**2 [Fig. 19]

Cutout and Drilling Pattern for Flanged End

7,500

1,000 1,250 1,600 2,000 AL 2,500 3,200 3.600 4.000 5.000 6 000 1,000 1,250 1,600 2,000 CU 2,500 3,200 3,600 4,000 5,000 6.000

Structure Data

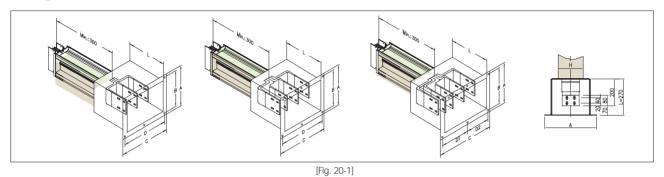
Technical Data

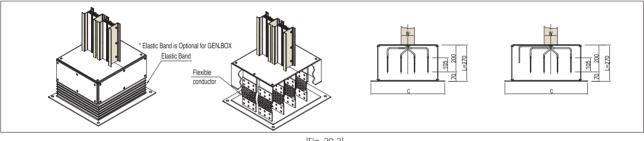
ction

Installation Procedure

Table 19

Technical Data


Physical Data

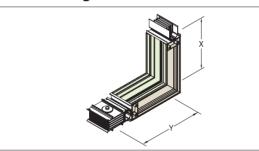


General Specifications

Physical Data 3.1 Straight Feeders

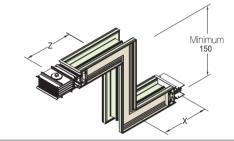
Flanged End Box / Feed in Box

[Fig.	20-2]
-------	-------

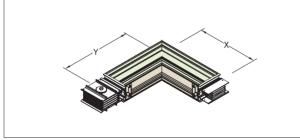

																		Table 20
	AMPS																	
, í				В	С	D			В	С	D		А		С		D2	L
	630	1	347	297	410	180X2	270	347	297	510	230X2	270	340	297	580	300	230	270
	800	1	379	329	410	180X2	270	379	329	510	230X2	270	379	329	580	300	230	270
	1,000	1	392	342	410	180X2	270	392	342	510	230X2	270	392	342	580	300	230	270
	1,250	1	414	364	410	180X2	270	414	364	510	230X2	270	414	364	580	300	230	270
	1,600	1	470	420	410	180X2	270	470	420	510	230X2	270	470	420	580	300	230	270
AI	2,000	1	516	466	410	180X2	270	516	466	510	230X2	270	516	466	580	300	230	270
AL	2,500	2	592	542	470	210X2	270	592	542	600	275X2	270	592	542	670	345	275	270
	3,200	2	668	618	470	210X2	270	668	618	600	275X2	270	668	618	670	345	275	270
	3,600	2	708	658	470	210X2	270	708	658	600	275X2	270	708	658	670	345	275	270
	4,000	2	760	710	470	210X2	270	760	710	600	275X2	270	760	710	670	345	275	270
	5,000	3	926	876	470	210X2	270	926	876	600	275X2	270	926	876	670	345	275	270
	6,000	3	1004	954	470	210X2	270	1004	954	600	275X2	270	1004	954	670	345	275	270
	630	1	347	297	410	180X2	270	347	297	510	230X2	270	347	297	580	300	230	270
	800	1	347	297	410	180X2	270	347	297	510	230X2	270	347	297	580	300	230	270
	1,000	1	363	313	410	180X2	270	363	313	510	230X2	270	363	313	580	300	230	270
	1,250	1	379	329	410	180X2	270	379	329	510	230X2	270	379	329	580	300	230	270
	1,600	1	414	364	410	180X2	270	414	364	510	230X2	270	414	364	580	300	230	270
	2,000	1	451	401	410	180X2	270	451	401	510	230X2	270	451	401	580	300	230	270
CU	2,500	1	501	451	410	180X2	270	501	451	510	230X2	270	501	451	580	300	230	270
	3,200	1	556	506	470	210X2	270	556	506	600	275X2	270	556	506	670	345	275	270
	3,600	2	592	542	470	210X2	270	592	542	600	275X2	270	592	542	670	345	275	270
	4,000	2	630	580	470	210X2	270	630	580	600	275X2	270	630	580	670	345	275	270
	5,000	2	730	680	470	210X2	270	730	680	600	275X2	270	730	680	670	345	275	270
	6,000	3	809	759	470	210X2	270	809	759	600	275X2	270	809	759	670	345	275	270
	7,500	3	959	909	470	210X2	270	959	909	600	275X2	270	959	909	670	345	275	270

Physical Data 3.2 Fittings

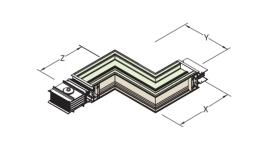
LS C&S Bus Duct has a complete range of fittings to satisfy all lay-out conditions. Angles other than 90° are available.


Fittings designations are shown in the following figures and are based on the source-side and the load-side of the device. Offset and combination elbows are used where standard elbows are not feasible.

Elbow-Fittings



Horizontal Elbow [Fig. 21-1]

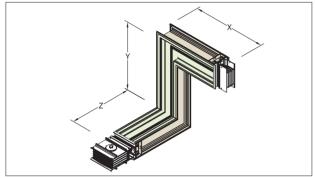


Horizontal Offset [Fig. 21-3]

Vertical Elbow [Fig. 21-2]

Vertical Offset [Fig. 21-4]

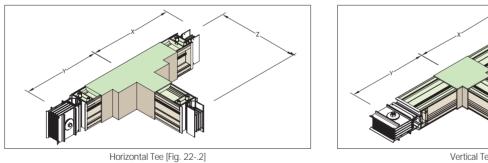
Ver.	Elbow		Table 21-1	Ver. O
		Standard	Dimension	
			Elbows	
	AMPS		Y	
		(mm)	(mm)	
	630~1,250	500	500	
	1,600~3,200	600	600	
AL	3,600~4,000	700	700	AL –
	5,000~6,000	800	800	_
	630~2,000	500	500	
CU	2,500~4,000	600	600	-
CU	5,000~6,000	700	700	CU -
	7,500	800	800	_

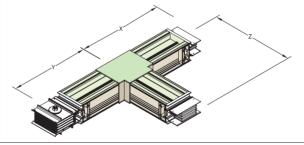

Ver. Offset Table 21-2							
	AMPS						
				Z (mm)			
	630~1,250	500	150	500			
	1,600~3,200	600	150	600			
AL	3,600~4,000	700	150	700			
	5,000~6,000	800	150	800			
	630~2,000	500	150	500			
	3,000~4,000	600	150	600			
CU	5,000~6,000	700	150	700			
	7,500	800	150	800			

Introduction

General Specification

Physical Data 3.2 Fittings

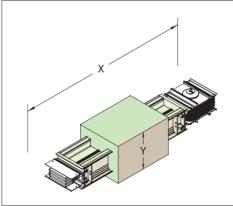

Combination



[Fig. 22-1]

				Table 22-1
			Standard Dimension	
	AMPS		Combination Elbow	
		Х	Y	Z
		(mm)	(mm)	(mm)
	630~1,250	500	500	500
AI	1,600~3,200	600	600	600
AL	3,600~4,000	700	700	700
	5,000~6,000	800	800	800
	630~2,000	500	500	500
CU	3,000~4,000	600	600	600
00	5,000~6,000	700	700	700
	7,500	800	800	800

Tee

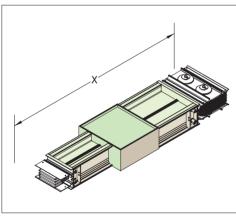

Vertical Tee [Fig. 22-3]

Ver. Tee

Ver. Te	е			Table 22-2					
	AMPS								
				Z					
		(mm)	(mm)	(mm)					
	630~1,250	500	500	500					
A 1	1,600~3,200	600	600	600					
AL	3,600~4,000	700	700	700					
	5,000~6,000	800	800	800					
	630~2,000	500	500	500					
CU -	3,000~4,000	600	600	600					
	5,000~6,000	700	700	700					
	7,500	800	800	800					

Expansion(if needed)

This fitting is designed to allow for up to 60mm of linear expansion.



ear expansion.		Table 23-1
	Standard	Dimension
		Y
	(mm)	(mm)
630~7,500	1,500	360

[Fig. 23-1]

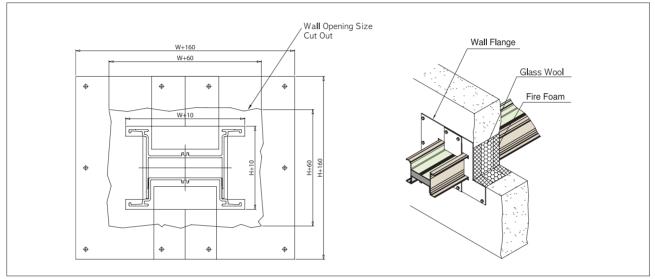
Reducer

This fitting offers an economical way to distribute reduced current from a higher ampacity feeder.

[Fig. 23-2]

duced current from a highe	r ampacity feeder.	Table 23-2
		Standard Dimension
		X(mm)
1,000	630~800	
1,250	800~1,000	
1,600	1,000~1,250	-
2,000	1,250~1,600	
2,500	1,600~2,000	- 1,000
3,200	2,000~2,500	1,000
4,000	2,500~3,200	
5,000	3,200~4,000	-
6,000	4,000~5,000	
7,500	5,000~6,000	·

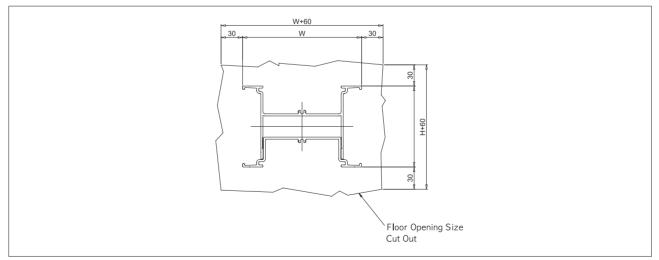
Structure Data


Technical Data

Physical Data 3.2 Fittings

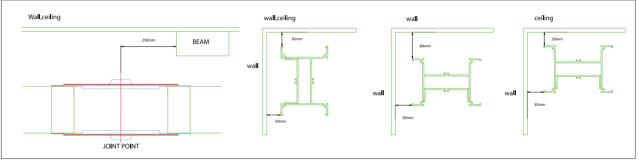
Wall Flange

A flange is used to seal the wall, ceiling and floor openings through which the bus duct passes.


The dimensions of a wall opening (cutout) should be 30mm larger than the external dimensions of the LS C&S Bus Duct.

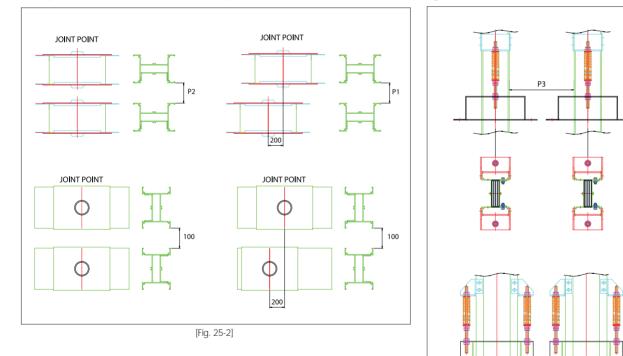
[Fig. 24-1]

Floor Openings


The dimensions of a floor opening (cutout) should be 30mm larger than the external dimensions of the LS C&S Bus Duct.

[Fig. 24-2]

Minimum Clearances for Heat Dissipation


Minimum clearances between the bus duct and walls, ceiling or beams are shown.

[Fig. 25-1]

Minimum Distances

Examples of minimum distances between parallel runs of bus duct are shown in the figures below.

			Table 25
			4W AND 4W(mm)
P1	110	135	130
P2	150	175	180
P3	190	215	230

*Outdoor applications for horizontal edge-wise, riser, plug-in and joint

applications require advance discussion with the manufacturer.

[Fig. 25-3]

200

Introduction

General Specifications

Physical Data

Technical Data

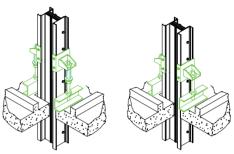
Monitoring

Installation Procedure

Introduction

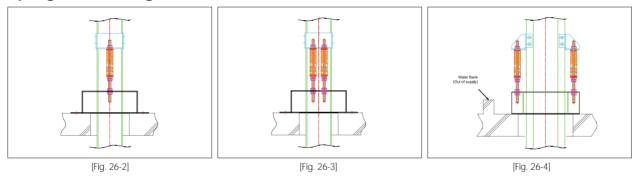
General Specifications

Structure Data

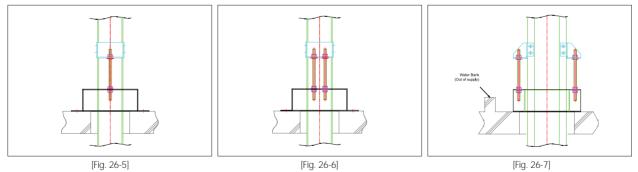

Technical Data

Physical Data 3.4 Hangers

Vertical Mounting Hangers

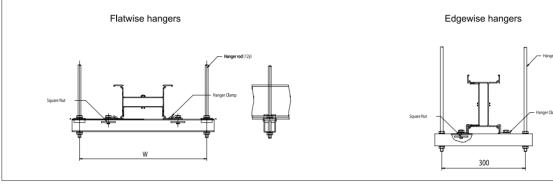

Spring hangers are used to support the bus duct between floors. The number of springs (rods) per hanger depends on the weight of the installed duct. When the distance between floors exceeds 4.5 m, a center support is required. Mounting locations correspond with floor flanges and are easily adjusted.

Rigid hangers (no spring) are also available, and are used for support at the center and ends of a bus duct run.



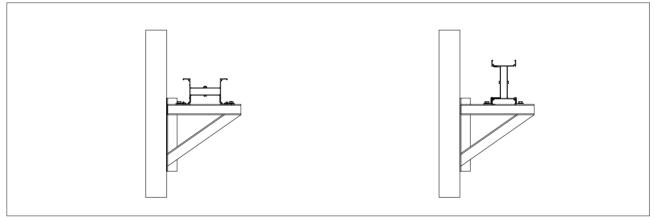
[Fig. 26-1]

Spring Vertical Hanger


Rigid Vertical Hanger

Horizontal Hangers

1. Trapeze Hangers & Single Drop Rod Hangers


These hangers are intended for support at 1.5 m intervals. They are designed to be used with 12mm diameter drop rods.

[Fig. 27-1]

2. Wall Hangers

When trapeze or single drop rod hangers are not feasible, wall hangers can be used as shown below.

[Fig. 27-2]

Introduction

General Specificatic

Physical Data

Technical Data

Installation Procedure

Introduction

General Specifications

Structure Data

Technical Data

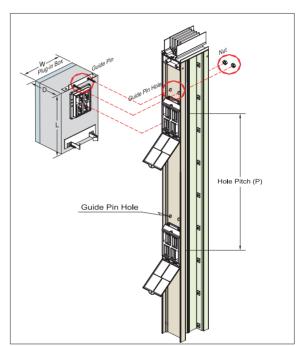
Physical Data 3.5 Plug-in Feeders

Straight Lengths: Plug-in and Tap-off

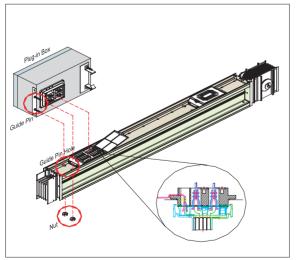
The length of plug-in, tap-off and feeder bus duct, and the position of plug-in and tap-off locations can be made to order.

Standard bus duct length is 3000mm.

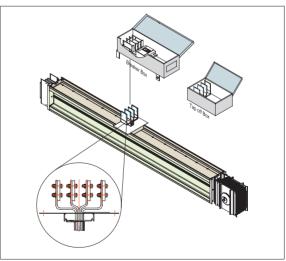
For plug-in feeder, the maximum rating per plug-in unit is 800A. Maximum tap-off rating is 1200A.


Plua-in Feeder

Plug-in Feeder	Table 28-1
MCCB FRAME (AF)	" Minimun required Plug-in Hole Pitch (P)" (mm)
50, 60, 100	650
200	650
400	900
600, 800	1000
1000, 1200	1300


Plug-in Box

	3W	4W		U	
50, 60, 100	200	250	450	220	
225	200	250	450	220	28-2
400	250	300	750	220	20-2
600, 800	350	400	800	220	
1000,1200	400	450	1200	220	28-3


Table 28-2

[Fig. 28-1]

[Fig. 28-2]

[Fig. 28-3]

Physical Data 3.6 MCCB (Molded Case Circuit Breaker)

Molded case circuit breakers are available ranging from 15A to 1200A, 220V to 600V. Type ABS is standard.

Type ABH is high capacity, and type ABL is current limiting. All models comply with KS C 8321, JIS C8370 and IEC 60157-1.

[Fig. 29-1]

50 3,4 5, 10, 15, 20, 30, 40, 50 25 14 10 5 100 10 3,4 15, 20, 30, 40, 50, 60, 75, 100 50 25 25 225 3,4 100, 125, 150, 175, 200, 225 50 25 25 10 400 3.4 250, 300, 350, 400 50 42 35 22 ABS 50 600 3 4 500 600 65 25 100 800 3,4 700, 800 100 65 50 25 1,000 3, 4 1,000 100 65 65 45 65 45 1.200 3.4 1.200 100 65 15, 20, 30, 40, 50 50 25 25 10 50 3 4 100 15, 20, 30, 40, 50, 60, 75, 100 65 35 35 18 3,4 ABH 225 3,4 125, 150, 175, 200, 225 65 35 35 18 400 3.4 250, 300, 350, 400 85 65 50 25 50 3.4 15, 20, 30, 40, 50 65 100 65 35 125, 150, 175, 200, 225 65 35 100 3,4 125 65 225 3,4 250, 300, 350, 400 125 100 85 30 250, 300, 350, 400 125 100 85 400 3, 4 30 ABL 600 500, 600 125 100 85 30 3.4 800 3, 4 700, 800 125 100 85 30 1,000 3, 4 1,000 125 85 85 65 85 1,200 3, 4 125 85 65 1,200

* Note: Other brands of MCCB are on request.

Introduction

General Specificatic

Physical Data

Technical Data

Installation Procedure

ntroduction

General Specifications

Structure Data

Technical Data

Table 29


Physical Data 3.7 Additional Attachments

Determine Additional Attachments, etc.

CT(current transformer), TD(transducer) and auxiliary devices can be incorporated in the branch unit or breaker to permit monitoring of the system. Customer must provide branch circuit specifics.

Determine Operating Method: External Door Type

Various door types are available for the branch unit. Examples are shown below.

Button [Fig. 30-5]

Outlet [Fig. 30-6]

The impedance and voltage drop values for aluminum and copper conductors are shown in the tables below. The values listed are measured between line and neutral phases at 60 Hz. For a 50 Hz installation, multiply the reactance (X) by 0.83. The resistance (R) remains unchanged due to the negligible difference in frequency.

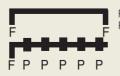
Calculate voltage drop of line to line as following equation. $\cos \theta$ is power factor. Voltage Drop (Vd) = rated load amperes $x\sqrt{3}$ (R $\cos \theta + X \sin \theta$)

Aluminum Bus Bar

AMP	Impedance x 10 ⁻³ @/100m, 60 Hz						Voltage Di	op(/100m)			
Rating	R	х	Z	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
630	13.98	4.07	14.56	8.82	10.17	11.48	12.71	13.85	14.87	15.66	15.25
800	7.97	2.62	8.39	6.77	7.74	8.66	9.53	10.32	11.01	11.52	11.04
1,000	6.83	2.21	7.18	7.21	8.25	9.24	10.17	11.02	11.77	12.32	11.84
1,250	5.55	1.82	5.84	7.36	8.41	9.41	10.35	11.22	11.97	12.52	12.01
1,600	3.82	1.23	4.02	6.43	7.36	8.25	9.09	9.85	10.52	11.02	10.60
2,000	3.08	1.00	3.24	6.52	7.46	8.35	9.19	9.96	10.63	11.12	10.67
2,500	2.40	0.80	2.53	6.41	7.32	8.18	9.00	9.74	10.39	10.86	10.40
3,200	1.91	0.61	2.00	6.41	7.34	8.22	9.05	9.82	10.48	10.98	10.56
3,600	1.72	0.55	1.81	6.52	7.46	8.36	9.21	9.99	10.67	11.18	10.74
4,000	1.54	0.50	1.62	6.50	7.43	8.32	9.16	9.93	10.60	11.10	10.64
5,000	1.15	0.37	1.21	6.03	6.90	7.74	8.52	9.24	9.87	10.34	9.94
6,000	1.02	0.33	1.08	6.49	7.43	8.32	9.15	9.92	10.58	11.08	10.63

Copper Bus Bar

AMP	Impedar	nce x 10 ⁻³ <i>@</i> /100r					Voltage Dr	op(/100m)			
Rating											1
630	7.49	4.07	8.53	6.69	7.34	7.94	8.46	8.90	9.21	9.30	8.18
800	7.49	3.84	8.42	8.20	9.04	9.80	10.49	11.07	11.50	11.67	10.38
1,000	5.49	2.99	6.25	7.79	8.55	9.24	9.85	10.35	10.72	10.82	9.52
1,250	4.39	2.45	5.03	7.91	8.66	9.34	9.94	10.44	10.78	10.86	9.50
1,600	3.10	1.71	3.54	7.09	7.77	8.39	8.94	9.40	9.72	9.80	8.60
2,000	2.40	1.35	2.76	6.96	7.61	8.21	8.73	9.17	9.46	9.53	8.32
2,500	1.86	1.05	2.13	6.73	7.37	7.95	8.45	8.87	9.16	9.22	8.06
3,200	1.54	0.85	1.76	7.05	7.73	8.35	8.89	9.34	9.66	9.75	8.55
3,600	1.35	0.74	1.54	6.94	7.61	8.22	8.75	9.20	9.51	9.60	8.42
4,000	1.20	0.67	1.37	6.93	7.58	8.18	8.70	9.13	9.42	9.49	8.29
5,000	0.93	0.52	1.06	6.71	7.35	7.92	8.43	8.84	9.13	9.19	8.03
6,000	0.80	0.45	0.91	6.92	7.57	8.17	8.69	9.11	9.41	9.48	8.23
7,500	0.62	0.35	0.71	6.71	7.34	7.91	8.42	8.83	9.12	9.18	8.02


1) Actual Voltage Drop = α x Vd x

Actual load current x Ac

x Actual distance(m) 100m

2) α (Load Distribution Constant i) $\alpha = 1$, Concentrated load

ii) $\alpha = 0.5$, Distributed load

F : Flanged End(Panel Connection) P : Plug-in Unit Table 31-1

Technical Data 4.2 Short-Circuit Withstand Characteristics

LS C&S Bus Duct has been tested under actual short-circuit conditions according to IEC 60439 1 & 2 as witnessed by ASTA and KEMA. The above figure shows 4000A bus duct under test, and includes the associated phase-to-phase oscillogram.

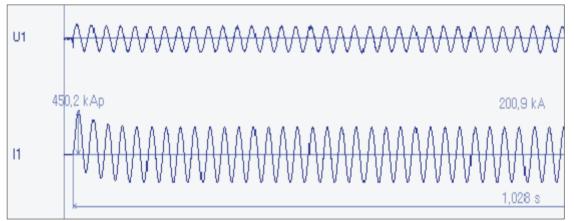
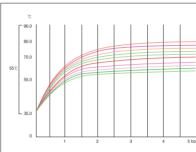

LS C&S Bus Duct has been confirmed to have high short-circuit strength because of its reinforced housing design.

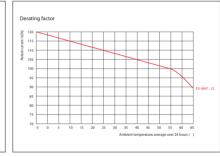
Table 32

The 4000A bus duct has a 200kA short-circuit rating.

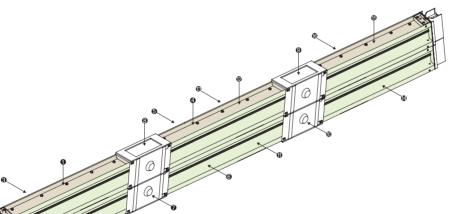
Short Circuit Ratings	of Phase to Phase
------------------------------	-------------------

	5				
AMP	Alumir	num(kA)	Copper(kA)		
Rating	1 sec		1 sec	3 sec	
630	24	14	40	21	
800	42	24	40	21	
1,000	50	29	51	29	
1,250	62	36	65	37	
1,600	95	55	95	55	
2,000	121	70	129	75	
2,500	132	76	150	107	
3,200	169	97	191	110	
4,000	200	140	200	149	
5,000	200	150	200	200	
6,000	200	150	200	200	
7,500	-	-	200	200	




[Fig. 32]

The temperature rise values for LS C&S Bus Duct shall not exceed 70°C at connectors and the duct exterior shall not exceed 55°C.


The profile and thermal properties of the housing prevent the overheating of the bus bars, the joint area and the duct exterior when LS C&S Bus Duct is operated within rated current limits according to IEC 60439 1 & 2.

Remarks : This derating diagram is based on indoor use. In condition of outdoor, a consultation with LS C&S is required.

Temperature Rise Value

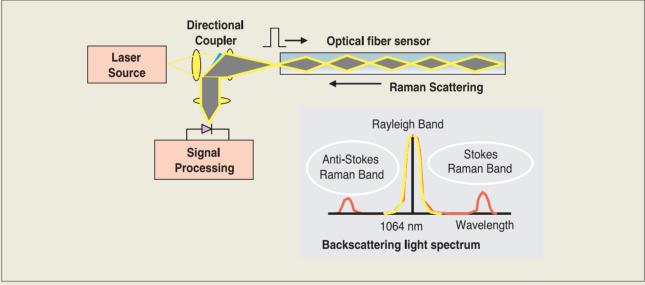
Ch	Temprise(K)	Ch	Temprise(K)				
1	42	9	27				
2	43	10	28				
3	42	11	42				
4	41	12	43				
5	41	13	43				
6	43	14	41				
7	26	15	44				
8	30	16	45				

Remarks : Ch 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16 are surface of housing Ch 7, 8, 9, 10 are surface of joint cover.

Normal test condition is under 35°C by IEC60439-1,2

Structure Data

Table 33


Temperature Monitoring System(Optional)

5.1 Overview 5.2 Principle of Operation

The bus duct temperature monitoring system uses an optical fiber as the sensor, and can measure distributed temperatures over several thousand meters with an accuracy of $\pm -0.5^{\circ}$ C.

ABF(air blown fiber) technology enables easy integration and installation of the system.

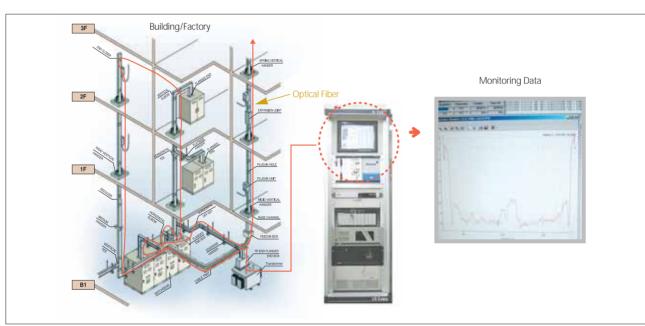
Easy operation & user-friendly GUI(Graphic User Interface)

Principle of Operation [Fig. 34]

Temperature Measurement

When the laser pulse passes through the optical fiber, backscattered reflections are returned to the input. The intensity of the Raman scattering is temperature dependent, giving an accuracy of \pm 0.5 °C.

Distance Measurement


The location of a temperature measurement is determined by calculating the length of time for the backscattered light to return to the input. This is similar to an OTDR (Optical Time Domain Reflectometer). Distance resolution is within 1 m.

5.3 Bus Duct Application 5.4 Temperature Monitoring System Profile

Bus duct / transformer temperature Fire alarm for building and factory Bus duct / transformer vibration & noise Video image transmission

Safety

Early detection and warning of abnormal conditions

Bus Duct Application [Fig. 35-1]

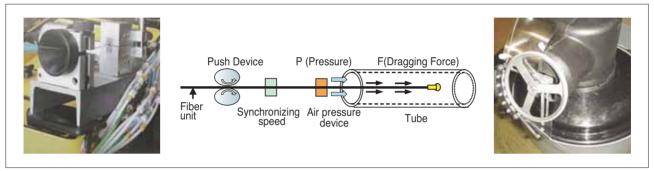
Temperature Monitoring System Profile [Fig. 35-2]

ntroduction

General Specifications

Introduction

General Specificatio


Physical Data

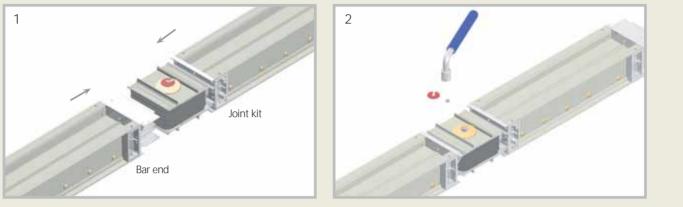
Technical Data

5.5 Fast & Easy Installation in Bus Duct line 5.6 System Products

ABF(Air Blown Fiber) Technology

After the installation of the flexible tube, the optical fiber is blown into the tube with compressed air. The use of various tube connectors allows for easy installation in narrow and curved locations. Reduced installation time, minimal optical joints and uncomplicated replacement.

Fast & Easy Installation in Bus Duct line [Fig. 36-1]

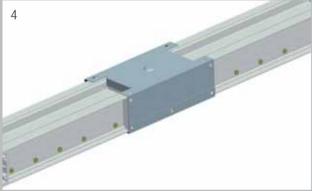

The LS C&S Bus Duct Temperature Monitoring System can be configured for various operating modes according to the customer's requirements.

A						
The second se						
2011 C						
E						
AT THE AND						
1 H 1						Table 36
	Fiber Type	Model	Range[km]	Channels	Sampling Resolution [m]	Accuracy [°C]
Distance of the Owner, or other		M2	2		1	
		M4	4			0.5
The second s	Multi mode	M8	8	2, 4, 6		
	mode	M10	10			1
		M12	12			I
1 Constant		S15	15			
and the second s	Single mode	S20	20	1, 2, 4	2	2
The second control of the second s	HICCE -	S30	30			

System Products [Fig. 36-2]

Installation Procedure


Joint Assembly Instructions



- Check contact surfaces for damage or contaminationEnsure proper alignment in all planesSlowly insert the bar ends into the joint kit

Using a torque wrench, tighten the outer bolt head until it breaks off (shear force = 700~1,000 kgf.cm)

Physical Data

Technical Data

Structure Data

Technical Data

LS C&S Bus Way System [Mini-Way™]

100

Technical Data

LS C&S Bus Way System [Mini-way™] 39

Introduction Mini-Way, NSPB busduct is designed for low current (160A~400A). The insulation between each bus bar is Class B (130°C).

Safe and Efficient Distribution System

Mini-Way is suitable for modern structures like high-rise buildings, hospitals, shopping malls, residential buildings and factories because of easy installation, extension and load distribution. Also, experienced engineers in R&D, Designing and Installation can service all your needs from system design to after energization.

Performance

Mini-Way is the optimum optimized concept in cross-section, conductor support and housing shape. Mini-Way follows IEC standard, therefore it has high performance in thermal, voltage-drop and short-circuit strength characteristics.

Temperature Rising Stability

Temperature rising limits shall be within 55K or less on the external surface of the duct, as specified IEC 60439-1 & 2.

Conductor Supporting

Conductor support points were determined by computer simulation, resulting in stable installation and electrical performance. The insulation material is a highly polymerized compound with Class B ratings.

Short-Circuit Strength

For short-circuit strength, CAE (Computer Aided Engineering) applied the best insulator shape and location to endure mechanical and thermal stress.

Weight

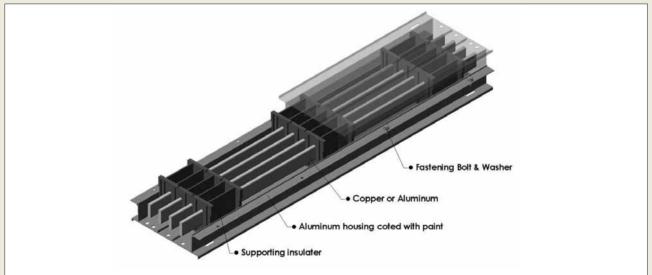
Weight is the most important factor contributing to the cost and time when busduct is installed. Mini-Way uses an aluminum housing, optimized conductor profile and other features specially designed for reduced weight.

Easy Installation

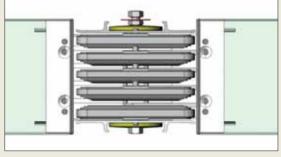
Ease of installation because of light weight and (Joint Brush) system is another benefit of Mini-Way.

Applied Standards

- IEC 60439-1 : Low-voltage switchgear and controlgear assemblies
- IEC 60439-2 : Particular requirement for busbar trunking systems(busways)
- BSEN 60439 : Busways
- NEMA BU 1.1 : Busways


Technical Data

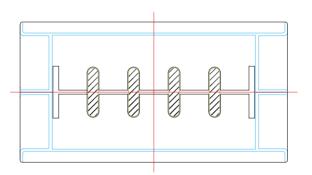
General Specifications 2.1 Basic Concept


Mini-Way Bus Duct is designed for the distribution of electricity in residential areas, factories and shopping malls.

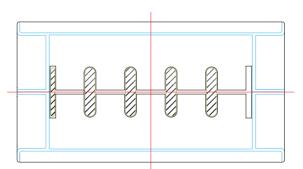
The easy connection between feeders by using the 'Joint Brush' fand the availability of IP54(Ingress Protection) rated housing reduces the risk of water penetration. Reduced weight by optimized aluminum housing design provides convenience during installation.

Detail Construction

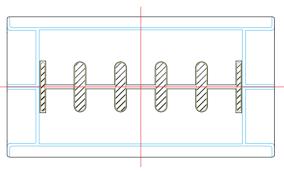
Joint Kit


Mini Way 160~400A

2.2 Grounding

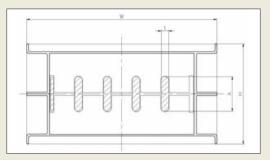


Mini-Way Bus Duct provides excess grounding capacity because of its flanged end terminal design. The cross section of our aluminum housing has over 100% of the internal bus bar conductor's area. Therefore the housing itself acts as a grounding conductor with low impedance as well as excellent heat radiation at the same time.


In case more grounding capacity is need, an internal bus bar is built in to the system, providing either an internal 50% or 100% current capacity for ground path.

4W+GE

4W+50%E

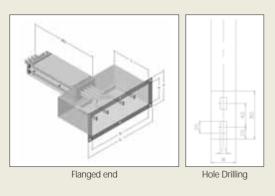

4W+100%E

Structure Data 3.1 Straight Feeders

Dimensions

Conductor	Current(A)		Dimensi	ion(mm)			Weight(kg/m)	
Conductor		t		А			4W+HE	4W+FE
	160			20	87	4	4.2	4.4
Aluminum	250	6.35	165	30	87	4.7	4.2	3.7
	400			50	107	7	7.3	7.6
	160			20	87	4.5	5.16	5.8
Copper	250	6.35	165	30	87	5.86	6.5	7.2
	400	-		50	107	9	10.1	11.3

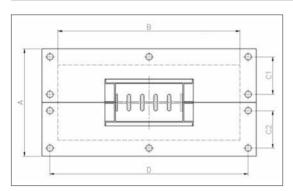
i ≪ Weight = 3m feeder + 1 joint brush



Flanged End

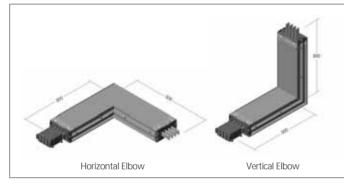
Flanged end is connected to either a transfomer or a panel. Elbow-type is also available.

Conductor	Current(A)				Dimension(mm)			
Conductor		t		L		В	С	D
	160		20	270	190	130	510	450
Aluminum	250	6.35	30	270	200	140	510	450
	400		50	270	220	160	510	450
	160		20	270	190	130	510	450
Copper	250	6.35	30	270	200	140	510	450
	400		50	270	220	160	510	450

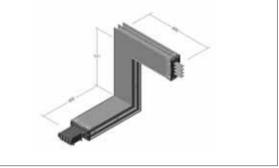

: Conductor thickness, W : conductor width

Panel Cut-Out Dimension

Conductor	0	Dimension(mm)						
		А	В					
	160	200	340		70			
Aluminum	250	200		370	70			
	400	220			80			
	160	200			70			
Copper	250	200	340	370	70			
	400	220			80			

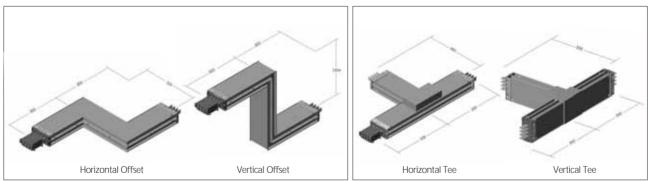

Structure Data 3.2 Fittings

Mini-Way Bus Duct has complete line of standard fittings to suit the lay-out conditions.


Custom fittings are also available.

Designation methods related to turning are specified in the figures below on the basis of 'source side' and 'load side'.

Elbow



Combination Elbow

Offset

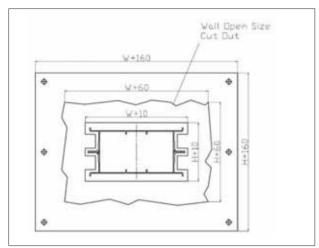
Tee

Current(A)					
Current(A)	Al	Cu			
160	134	134			
250	144	144			
400	164	164			

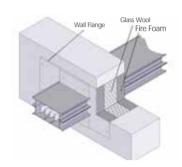
Introduction

General Specifications

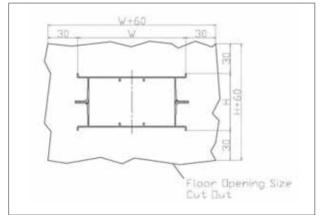
Physical Data


Technical Data

System Temperature Monitoring Ystem (Optional)

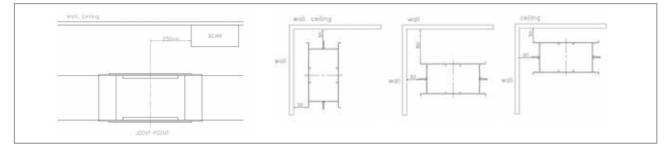

Installation Procedure

Introduction


Wall Flange

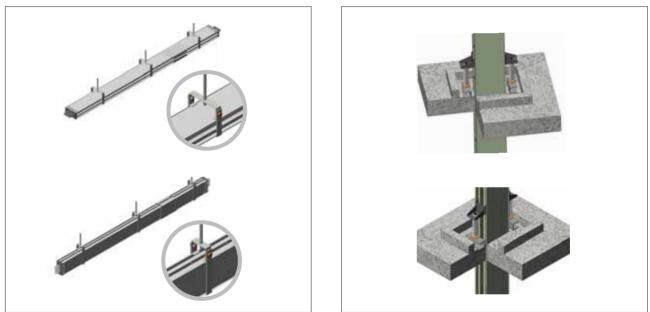
Glass wool and Fire foam don't supply from Manufacturer. • W : width(depending on Current) • H : height(depending on Current)

Floor Openings



- W : width(depending on Current)H : height(depending on Current)

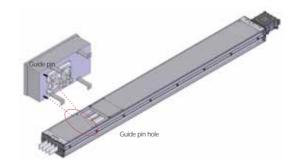
Structure Data


Structure Data 3.3 Installation Condition / 3.4 Hangers 3.5 Plug-In Feeder

Minimum Clearance

Vertical Hangers

Horizontal Hangers



The lengths of plug-in feeder and the positions of plug-in hole will be provided in order to be convenient for maintenance of user. All the standard lengths of plug-in feeder are 3,000mm.

Also, the guide pin ensures accurate and safe connection between plug-in brush and bus bar.

Technical Data 4.1 Voltage Drop Characteristic 4.2 Short Circuit Withstand Characteristics

The values of impedance of an aluminum and copper conductors are shown as follows. There are identical values per meter for line to neutral at 60Hz. In case of 50Hz, multiply Reactance(X) by 0.83, Resistance(R) does not change due to very small frequency effect.

 $V_d = I_L x \sqrt{3} (R \cos \theta + X \sin \theta)$

 ·V_d : Voltage Drop 	$\cdot I_L$: rated load current	$\cdot \cos heta$: power factor
•R : resistance	·X : reactance	$\cdot \sin \theta$: reactive factor

Oraclaster	0	(10	^{-з} <i>G</i> /100m, 60) Hz)				Volta	ige Drop (V/10	10m)			
Conductor Current(A)	Current(A)	Resistance	Reactance	Impedance	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1.0
	160	31.1	13.6	33.9	8.18	8.46	8.72	8.95	9.15	9.31	9.40	9.38	8.82
Aluminum	250	18.8	11.2	21.9	8.77	8.98	9.15	9.31	9.42	9.47	9.44	9.24	8.13
	400	11.8	10.1	15.6	10.52	10.65	10.74	10.78	10.76	10.65	10.42	9.97	8.19
	160	31.6	15.4	35.1	8.65	8.93	9.17	9.38	9.56	9.68	9.73	9.64	8.75
Copper	250	18.6	13.0	22.7	9.32	9.50	9.64	9.75	9.80	9.79	9.68	9.39	8.04
	400	12.9	10.0	16.4	10.94	11.11	11.24	11.32	11.34	11.28	11.10	10.68	8.96

1) Actual Voltage Drop = α x Vd x Actual load current Rated load current

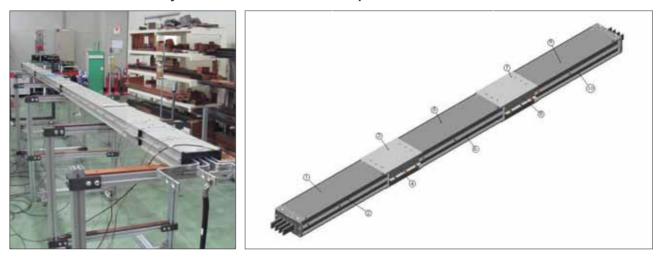
Actual distance(m)

2) α (Load Distribution Constant ~~ i) $~\alpha$ = 1, Concentrated load ~~ ii) $~\alpha$ = 0.5, Distributed load

F P P P P

F : Flanged End(Panel Connection) P : Plug-in Unit

Short circuit rating test of Mini-Way Bus Duct has been tested considering real short circuit conditions according to IEC 60439-1&2 under the KEMA and ASTA.


U9	
U1	
11	

Short-Circuit Strength

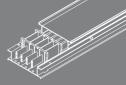
Current(A)	Alumin	um(kA)	Сорр	er(kA)	Current(A)	Aluminu	um(kA)	Сорре	er(kA)
Current(A)	1sec.		1sec.	3sec.	Current(A)	Irms(1sec.)	lpeak	Irms(1sec.)	Ipeak
160	10	6	10	6	160	10	22	10	22
250	10	6	10	6	250	10	22	16	35
400	25	15	25	15	400	25	55	30	66

Technical Data 4.3 Temperature Rising

The temperature rising limit values of Mini-Way Bus Duct shall not be exceeded for specified value as the conductor by 95K or less and outside duct by 55K or less from the ambient temperature.

Sensor No.	Sensor Position	Temperature Rising(K)
1	Surface of Top Cover (No.1 Length Cover)	17.5
2	Surface of Right Cover (No.1 Length Cover)	16.9
3	Surface of Top Cover (Primary Joint Cover)	16.1
4	Surface of Right Cover (Primary Joint Cover)	16.3
5	Surface of Top Cover (No.2 Length Cover)	20.2

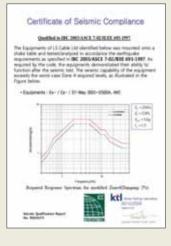
Sensor No.	Sensor Position	Temperature Rising(K)
6	Surface of Right Cover (No.2 Length Cover)	18.4
7	Surface of Top Cover (Secondary Joint Cover)	22.3
8	Surface of Right Cover (Secondary Joint Cover)	19.6
9	Surface of Top Cover (No.3 Length Cover)	16.3
10	Surface of Right Cover (No.3 Length Cover)	20.3

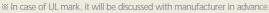

☆ - In case of 400A

- Ambient temperature : 22ºC

☆ - In case of 400A

- Ambient temperature : 22°C


Certificates


UL

SEISMIC (ZONE4)

ASTA

ELECTRICAL SAFETY

IEC ag		IECEx Certificate of Conformity				
		ECTROTECHNICAL Isome for Espitosive				
in the second	-		Testas res.			
144	-					
100.010.0	10000-01-010	Page 1 (11)				
lader.	ch Cana Lan Michael an Michael an Maran, Nagastra at Maran, Nagastra at					
Sector Search &	(Filester)					
Service-	second with the					
men a						
Spinster & Sultan	unitation et das	Park Meet Class				
Avant.		Booging States				
Internet and						
-						
() The contract is not						
2	And the second		ktl			

ISO9001

KEMA

GREEN ENVIRONMENT

ISO14001

Global Network

Branches

Singapore Office

300 Beach Road #25-07 The Concourse Singapore 199555 Tel. +65-6342-9162-3

Dubai Office

#502 Capricorn Tower, Sheikh Zayed Road P.O.Box 113798 Dubai, U.A.E Tel. +971-4-332-9445

India Office

New Delhi Office C-1, 3rd FL. Community Centre (Opp. I.I.T Gate) Safdarjung Development Area, New Delhi, 110016 India Tel. +91-11-4602-1657,1658

Mumbai Office

#209, 2rd Fl. Dynasty, "A" Wing, Andheri-Kurla Road, Mumbai, 400069 India Tel. +91-22-4030-9525

Bangalore Office #111, 1st Floor B Tower, Millenia Towers, Ulsoor, Bangalore, 560008 India Tel. +91-80-4022-4053

Moscow Office Park Place E-711, 113/1, Leninsky Prospect, Moscow, 117198 Russia Tel. +7-495-956-5814

Riyadh Office #7, 2nd Fl. Al-Rayes Bulding, In Olaya Steet B/D No.28, Riyadh, Saudi Arabia Tel. +966-1-201-3515

Sao Paulo Office

11th FL Itavera Building, Rua Arandu, 1544 Conj 111 e 112 Brookline Paulista, Sao Paulo, SP, Brazil, 04562-031 TeL, +55-11-2872-4838

Jakarta Office

Graha Mustika Ratu, 11th Floor, Jl.Jenderal Gatot Subroto Kav.74-75, Jakarta Selatan 12870, Indonesia Tel. +62-21-830-6733

Cairo Office

Flat No.36, El-Zeini Tower, 25 Misr Helwan Road, Maadi, Cairo, Egypt Tel. +20-19-966-2810

Sydney Office

Level 35, Suite 35.02 Northpoint 100 Miller Street North Sydney NSW 2060 Tel. +61-2-9460-0255

Johannesburg Office

PostNet Suite:79 Private Bag X9976 Sandton 2146 Johannesburg, South Africa Tel. +27-11-783-6320

Subsidiaries

LS Industrial Park, Xin Mei Rd, National High-tech Industrial Development Zone. Wuxi, Jiangsu Province, 214028 China Tel. +86-510-8534-5943

LSCT(Tianjin)

East of Jing-jin, Express, Yixingbu Entrance, Beichen, Tianjin, China Tel. +86-22-2699-7618

LSIC

Beijing, China HQ #B-2301, Landgent Center, No. 20, Dongsanhuanzhong, Chaoyang, Beijing 100022, China Tel. +86-10-5761-3166

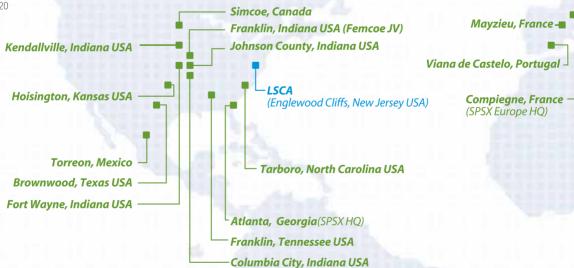
Shanghai Room 3105, 31st fl. Internatio

Room 3105, 31st fl. International Corporate City, No.3000 Zhongshan North Rd. Shanghai, 200060,China Tel. +86-21-5237-3399

Guangzhou

Room 1403, 14th Fl. Xinbaoli Mansion No.2 Zhongshanliu Rd. Guangzhou, 518040, China Tel. +86-20-8326-6251

Xian


Normann, HuaRong International, #21 South 2nd Ring Rd. Xi'an City, 710048,China Tel. +86-29-8230-9188

LSHQ

#1 Tanjiahe Rd. Dianjun Dt. Yichang City, Hubei Province, China 443004 Tel. +86-717-667-7771

Huyton Quarry, UK

LSCU(London, UK)

Korea Operations

Headquarters LS Tower 1026-6 Hogye-dong, Dongan-gu, Anyang, Gyeonggi-do 431-830 Korea Tel. +82-2-2189-9114

Anyang Plant 555 Hogye-dong, Dongan-gu, Anyang, Gyeonggi-do 431-830 Korea Tel. +82-31-428-4114

Gumi Plant 190 Gongdan-dong, Gumi, Gyengsangbuk-do 730-708 Korea Tel. +82-54-469-7114

Indong Plant 643 Jinpyeong-dong, Gumi, Gyengsangbuk-do 730-735 Korea Tel. +82-54-469-7763 Donghae Plant 1377 Songleong-dong, Donghae, Gangwon-do 240-806 Korea

1377 Songjeong-dong, Donghae, Gangwon-do 240-806 Korea Tel. +82-33-820-3114

R&D Center 555 Hogye-dong, Dongan-gu, Anyang, Gyeonggi-do 431-830 Korea Tel. +82-31-450-8114

Tel. +81-3-3582-9129 **Donghae Plant** Anyang Plant -**R&D** Center -Headquarters Gumi Plant Moscow, Russia Bramsche, Germany Arolsen, Germany LSIC(Beijing, China HQ)-_TTianjin, China LSCT(Tianjin, China) -Quattordio, Italy (2 Facilities) **LSHQ**(*Yichang*, *China*) Korea - LSCJ(Tokyo, Japan) - Suzhou, China LSIC(Xian, China) -Cairo, Egypt - LSIC (Shanghai, China) LSCW(Wuxi, China) -LSCI(Haryana) -^T New Delhi, India - LSIC(Guangzhou, China) [⊥] Dubai, U.A.E **LS-VINA**(Haiphong, Vietnam) Riyadh, Saudi Arabia Mumbai, India LSCV(Hochiminh, Vietnam) 🗕 Bangalore, India -LSCM(Penang, Malaysia) ^T Singapore ^T Jakarta, Indonesia LS Cable & System Branches **LS Cable & System Subsidiaries** Superior Essex LS HongQi Cable & System

Johannesburg, South Africa

LS-VINA(Haiphong)

Tel. +84-31-540750

LSCV(Hochiminh)

Tel. +84-61-356-9037

Tel. +60-4-588-9609(Ext.34)

LSCM(Penang)

LSCI(Haryana)

LSCA(New Jersey)

Tel. +1-201-816-2253

London, W4 5YA, UK

Tel. +44-20-8899-6671 LSCJ(Tokyo)

LSCU(London)

South of Binh Bridge Str. So Dau Precinct, Hong Bang Dt, Haiphong, Vietnam

Nhon Trach Il-Lockhang IZ, Nhon Trach Dt, Dong Nai province, Hochiminh, Vietnam

Lot 1192, Mukim 14, Permatang Tinggi, 1400 Bukit Mertajam, Penang, Malaysia

#101, 1st Floor, Park Centra, Sector 30, Gurgaon, Haryana 122 002, India Tel. +91-11-2612-1992

#109, Building 3, Chiswick Busuness Park 566 Chiswick High Rd.,

E 16th Fl. Akasaka Twin Tower 17-22, 2-Chome Akasaka, Minato-ku, Japan

920 Sylvan Avenue, Englewood Cliffs, NJ 07632, USA

Always with Our Customers

LS Cable & System

LS C&S Bus Way System Busduct Business Team 12F~17F, LS Tower, 1026-6, Hogye-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-080, Korea Tel. 82-(0)31-428-4295, 4140 / Fax. 82-(0)31-428-4281 / E-mail. busduct@lscns.com / www.lscns.com

©2012 LS Cable & System Ltd. All right reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of LS Cable & System and its licensors, if any. Products shown on this catalog are subject to change without any prior notice.